
ToQ.jl: A high-level programming language for
D-Wave machines based on Julia

Daniel ü'Malley
Computational Earth Science

Los Alamos National Laboratory
Los Alamos, NM 87545
Email: omalled@lanl.gov

Abstract-Quantum computers are becoming more widely
available, so it is important to develop tools that enable people
to easily program these computers to solve complex problems.
To address this issue, we present the design and two applications
of ToQ.jl, a high-level programming language for D-Wave quan
tum annealing machines. ToQ.jl leverages the metaprogramming
facilities in Julia (a high-level, high-performance programming
language tor technical computing) and uses D-Wave's ToQ
programming language as an intermediate representation. This
makes it possible for a programmer to leverage all the capabilities
of Julia, and the D-Wave machine is used as a co-processor.
We demonstrate ToQ.jl via two applications: (1) a pedagogical
example based on a map-coloring problem and (2) a linear least
squares problem. We also discuss our experience using ToQ.jl
with a D-Wave 2X, particularly with respect to a linear least
squares problem which is 01' broad interest to the scientific
computing community.

I. INTRODUCTION

Julia [1], [2] is a fast dynamic language for technical
computing. ToQ (pronounced "to cue") is a progranuning
language developed by D-Wave [3] that transforms human
readable code into a "quantum machine instruction" that can
be executed by a D-Wave quantum annealing machine (QAM).
ToQ can be seen as a high-level programming language among
tools available for programming QAMs, but it lacks many
high-level constructs (e.g., loops, arrays, functions , etc.). One
path forward for ToQ would be to incrementally add more
high-level functionality, but this would be time consuming and
result in yet another programming language. As an alternative
to this path, we have developed an extension of the Julia lan
guage, ToQ.jl, that uses ToQ as an intermediate representation.
With ToQ.jl, we inunediately have a high-level progranuning
language with a large set of available Iibraries that treats
the QAM as a co-processor. We call ToQ.jl a programming
language, but, more specifically, it is a Julia module that
incIudes macros [4] which effectively extend the syntax of
Julia to replicate the key features of ToQ.

In addition to ToQ, D-Wave has also developed application
program interfaces (APIs) that are available for the C and
Python programming languages. Like ToQ.jI, these APIs pro
vide a mechanism to utilize a D-Wave QAM from a high-level
programming language. However the APIs for these languages
require the programm er to interact with the QAM at a lower
level than ToQ. Using C or Python with these APIs to control

U.S. Government work not protected by U.S. copyright

Velimir V. Vesselinov
Computational Earth Science

Los Alamos National Laboratory
Los Alamos, NM 87545

Email: vvv@lanl.gov

the QAM gives the programm er a great deal of ftexibility, but
the ftexibility comes with a degree of complexity that is not
present when using ToQ. In contrast, ToQ.jl provides much
(but, at present, not all) of the ftexibility that comes with using
the C or Python APIs, but without the additional complexity.
For example, when using ToQ or ToQ.jl , the programmer is
able to define variables that correspond to logical bits. In
contrast, when using the C or Python APIs, the programm er
has to keep track of indices that correspond to bits rather
than using a C or Python variable to represent the bit. The
examples we study, both of which have run on a D-Wave 2X,
demonstrate that relatively complex problems can be expressed
in short ToQ.jl code (see the appendices).

11. TOQ.JL

The basic input to a QAM is a quadratic unconstrained
binary optirnization (QUBO) problem. The objective function
associated with a QUBO can be formulated as

f(q) = L viqi + L Wijqiqj

i<j

(1)

The QAM returns binary vectors, q, that are preferentially
sampled so that f (q) is small. The sampIes have a distribution
wh ich is approximately Boltzmann [5]. The goal of ToQ.jl is to
make it easy to represent problems in the form of (1). While
this form may be restrictive, it has been shown that many
NP-hard problems can be formulated in an equivalent Ising
formulation [6].

The design of ToQ.j1 is heavily inftuenced by JuMP (a
modeling language for mathematical progranuning that ex
tends Julia) [7] and ToQ itself. Writing a program with ToQ.jl
generally follows these steps:

1) Create a ToQ.jl model object
2) Define the variables and parameters of the model (we

will discuss the difference between these)
3) Add terms to the QUBO objective function (1)
4) Execute the model on the QAM
5) Load the sampIes

Creating a ToQ.j1 model object is achieved by calling
ToQ. Model (...) where the parameters to this function
describe the QAM and give names for where files associated
with the model will be stored seamlessly in the background.

If we think of the QAM as being analogous to a GPU, then a
model is analogous to a GPU kernel.

One can define scalar, array, matrix, ete
variables with ToQ.jl's @defvar macro.
For example, @defvar model mybit,
@defvar model mybits[l:m], and
@defvar model mybits[l:m , l:n] would create a
scalar, m-element array, and an m-by-n matrix variable,
respectively, as part of model where m and n are Julia
integer variables. Parameters are defined similarly with the
@defparam macro, but only scalar parameters are permitted.
It can be easy to conflate "variables" and "parameters" (a
nomenclature wh ich we borrowed from ToQ), but they are
distinct. A variable corresponds to a qi in (1), but a parameter
does not. Note that set of functions that can be written as (1)
form a vector space. In particular, if fand 9 are in this form,
then so is af + ßg. Parameters are akin to the a and ß. The
parameters make it possible to vary the weights of different
parts of (1) without having to redo a (potentially expensive)
operation called embedding. The utility of parameters will be
illustrated in the applications.

Initially the QUBO (f(q) from (1)) associated
with the model is equal to zero. One can add terms
to f(q) with the @addterm macro. For example
@addterm model exp(2)*mybit whcre mybit is
a ToQ.jl variable would add a linear term to f(q) where
the Vi corresponding to mybi t would be incremented by
e2 . Note that the ability to use the exponential function in
these terms comes from Julia's underlying implementation
of the exponential function. Parameters can also be included
in the terms, but the value of the parameters must be set
before executing on the QAM. For example, it is possible
to do @addterm model param*mybit where param
is a ToQ.jl parameter. Quadratic terms can also be added,
@addterm model param*mybits[j]*mybits[i]
where mybit s is a variable array and i and j are Julia
integer variables. The terms must be products, contain one or
two variables, and zero or one parameters. They can contain
an arbitrary number of other valid Julia expressions that
evaluate to a scalar.

By calling ToQ. sol ve! (model ; kwargs ...), one
causes the QAM to produce sampies for the QUBO associated
with model using a set of keyword arguments kwargs.
ToQ.jl accomplishes this by translating the model into a ToQ
program and using the 'dw' command line interface [3] to
compile, embed (if desired), and execute the QUBO on the
QAM. There are several keyword arguments that can be passed
to this function. There is a keyword argument for each of the
parameters - it is at this time that the parameter values are
set. Other keyword arguments include numreads (how many
sampies the machine should produce) and doembed. The
doembed argument controls whether or not the model should
be "embedded." ToQ.jl allows one to pose a logical QUBO in
the form of (1), but the QAM imposes additional restrictions
(sparsity on Wij). The process of embedding transforms the
logical QUBO into one that matches the sparsity structure

U.S. Government work not protected by U.S. copyright

imposed by the machine. This introduces an additional key
word argument param_chain that is effectively a parameter
that must be set. Embedding adds new terms to the QUBO,
and param_chain controls the magnitude of these terms.
One can reset the parameters' values and call ToQ. sol ve !
again without having to do the embedding again by passing
doembed=false as a keyword argument.

After calling ToQ.solve!, ToQ.getnumsolutions
can be used to obtain the number of unique sampies returned
by the QAM. Then the i th solution can be loaded with
@loadsolution model energy occs isvalid i
where now energy contains the energy of the sampie
(reported by the QAM), occs contains the number of
occurrences of that sampie, and i sv al i d is true if the
sampie is valid (i.e., the embedding process did not break the
logical structure for this sampie). The values of the ToQ.jl
variables associated with this solution can then be accessed
via varname. value where varname is the name of the
variable.

In. ApPLICATION TO MAP COLORING

Having described the basic usage of ToQ.jl, we now il
lustrate the usage with an application to coloring the map
of Canada with three colors so that no two neighboring
provinces/territories (hereafter, just provinces for brevity) have
the same color. A C implementation of this map-coloring
problem is part ofD-Wave's educational materials (e.g., [8]). A
condensed version of the source code for solving this problem
is given in appendix A. The first handful of lines set up an
array of the provinces of Canada and a dictionary describing
their neighbor relationships, then a ToQ.j1 model object is
created. Next, the variables that will be used are defined via
@defvar m rgb [1 : length (provs), 1: 3], which is
a matrix with one row for each province and 3 columns. The
idea behind this is that each row will contain exactly one 1.
The column in wh ich the 1 is contained determines wh ich
color is assigned to the province corresponding to that row.
For example, the first row is the row for British Columbia.
If rgb[l, 1]==1, rgb[l, 2]==1, or rgb[l, 3]==1,
British Columbia would be assigned the color red, green, or
blue, respectively.

The QUBO must be designed in such a way that each row
is encouraged to contain exactly one non zero bit and so that if
two provinces neighbor one another, they do not have a one in
the same column. The QUBO can be represented in the form

where q corresponds to rgb, P is the set of provinces, gp is
minimized when the row of rgb corresponding to province
P has exactly one nonzero element, N is a set containing all
sets of neighboring provinces, and h{PI ,P2} is minimized when
the the rows in rgb corresponding to provinces PI and P2 do
not contain a 1 in the same column. At a high level, the first
term of (2) encourages the QAM to produce sampies such that
each province is assigned exactly one color and the second

term encourages the QAM to produce sampies such that no
two neighboring provinces have the same color. The constants
a and ß will correspond to ToQ.jl parameters that control
how strongly the QAM should be encouraged to achieve each
of these goals. a corresponds to the ToQ.jl parameter, c_p,
defined via @defparam m c_p and ß corresponds to n_p.

The first term is constructed with 3 nested loops:

for i = 1:1ength(provs)
for j = 1:3

@addterm m -l*c_p*rgb[i, j]
for k = l:j - 1

@addterm m 2*c_ p*rgb[i, j]*rgb[i, k]

The second term is constructed with 3 nested loops where
the innermost loop is executed only if the two provinces are
neighbors:

for j = 1:1ength(provs)
for k = l:j - 1
if provs[k] in nbors[provs[j]]
for i = 1:3

@addterm m n _p*rgb[j, i]*rgb[k, i]

Since ToQ.jl extends Julia, the high level constructs we used
to describe the provinces and their neighbor relationships (an
array of strings and a dictionary) can be readily used to
construct the QUBO.

The model is executed on the QAM by calling
ToQ. sol ve! (m; ...), where in the listing in appendix
A, c_ p, n_ p, and param_ chain are set to 1,5, and 2 (re
spectively), the number of sampies (numreads) is set to 100,
and the embedding will be performed (doembed=true).
The values of c_p, n_p, and param_ chain must be tuned
to obtain good results. For example, if c_ p is too large in
comparison to n_ p and param_ chain, the sampies will tend
to assign a unique color to the provinces, but will be prone to
have neighbors assigned the same color and/or inconsistencies
with the logical QUBO. Similar undesired behavior results if
n_p or param_chain is too large in comparison to the other
parameters. Note that on subsequent solves, the parameters
could be set to different values without needing to embed
the problem again. That is, in subsequent solves, one can set
doembed=false and this will speed the process up. Finally,
solutions can be loaded with @loadsolution.

IV. ApPLICATION TO LINEAR LEAST SQUARES PROBLEMS

We begin by considering the binary linear least squares
problem

(3)

where A is a real-valued matrix, b is a real-valued vector and q
is a binary vector. The objective function for this optimization

U.S. Government work not protected by U.S. copyright

problem is readily represented in the form of (1) with

(4)

(5)

where A i j is the component of A in the i th row and lh
column and bi is the i th component of b. The ToQ.jl code
for solving this problem is listed in appendix B. Note that the
code in appendix B is implemented as a Julia function wh ich
can be called just like any other Julia function.

Suppose that we now wish to solve a (non-binary) linear
least squares problem

x = arg minxl lAx - b ll ~ (6)

where x is not a binary vector, but a real-valued vector with
N components. To solve this problem using the binary least
squares routine, we discretize x with an n -bit fixed point
approximation

n

d _ '" 2j o - j
Xi - ~ % - l)n+ j (7)

j = l

where jo sets the fixed point, xd = (x~, x~ , ... , x1v-) is the
discretized version of x and q = (q1, q2," ., qNn) is a binary
vector. Then we form a new matrix, Ad with Nn columns
that is constructed in such a way that Axd = Adq. This is
achieved by setting the [(i - l)n + j] th column of Adequal to
2jo - j times the i th column of A where i ranges from 1 to N
and j ranges from 1 to n. Using A d , we can approximately
reformulate the linear least squares problem in terms of q

(8)

Now, the problem can be optimized by the QAM using the
QUBO formulation given in equations 4 and 5 with A i j

replaced by A~j'

A. Laplace's Equation

Our development of the linear least squares problems arose
out of an attempt to use the D-Wave 2X to solve a one-
dimensional discretization of Laplace's equation,

- 2 1 0 0 0 0 0 0
1 - 2 1 0 0 0 0 0
0 1 - 2 1 0 0 0 0

Lx = x = b

0 0 0 0 1 - 2 1 0
0 0 0 0 0 1 - 2 1
0 0 0 0 0 0 1 - 2

(9)
This equation has many physical interpretations. For example,
in subsurface hydrology, this is a discretized version of the
steady-state groundwater equation where x would be a dis
cretization of the pressure and b would be a discretization of
the groundwater recharge.

Using the fixed-point least squares approach described pre
viously, we obtained 10,000 sampies from the D-Wave 2X

-1.5

-2 .0 • •
-2 .5 •

<>< •
11 -3 .0

~
"""§ -3.5
.Q •

-4.0

-4.5

-5.0

•
•

• •

• • •

_ 2 bits
_ 3 bits
_ 4 bits

•
•

-5 .51~--~2~---3~---4~--~5----~6----~7----~8--~9

Number of dimensions in x

Fig. l. The probability of obtaining the optimal fixed-point solution to a
discrete, one-dimensional Laplace equation as a function of the number of
(real-valued) unknowns is plotted for several different fixed-point representa
tions. No optimal solutions were obtained when the dimension of x was 9 or
10.

using lO different embeddings for lOO,OOO sampIes in total.
We explored fixed-point representations with 2, 3, and 4 bits;
and attempted to find a least squares solution to (9) with the
number of unknowns (dimension of x) ranging from 2 to lO.
The fixed-point version of the discrete Laplacian, Ld, and b
were then passed to the function listed in appendix B to obtain
the sampIes.

Fig. 2 shows an estimate of the probability of obtaining
a least squares solution for a subset of these problems. The
subset in the figure contains those where at least one of
the lOO,OOO sampIes was a least squares solution. In the
other cases, we estimate that the probability of obtaining
a least squares solution is less than or approximately one
in lOO,OOO. For least squares problems, this probability is
a natural performance metric. An alternative would be to
compute the expected time to obtain the least squares solution
(wh ich would be inversely proportional to the probability and
proportional to the annealing time). Doing so would bring
the annealing time into the picture (potentially an important
component of performance), but we have left the annealing
time fixed at the lowest possible value of 20 microseconds in
all the cases examined here. Another important performance
metric is the asymptotic time required to assemble the QUBO.
In the case of an N x N dense matrix, this time is O(N3).

This is the same as solving a dense least squares problem with
a cIassical computer, so it is unlikely that solving this problem
with a QAM will ever provide an enormous performance
increase. Sparse systems or binary least squares problems [9],
[lO] may have more potential for performance improvements
with a QAM.

U.S. Government work not protected by U.S. copyright

V. USER EXPERIENCE

From our perspective, there are two main complications that
arise when programming for the QAM:

1) The values of Vi and W ij are bounded. They correspond
to physical machine settings that have limits .

2) If we think of W ij as a matrix, the matrix is sparse and
the structure of the sparseness is fixed by the QAM .
A given W ij can be nonzero only if there is a physical
coupling between the bits qi and qj.

The last complication can be resolved by "chaining" bits
together, but this resolution introduces a complication of its
own.

In the current hardware (the D-Wave 2X), no three bits are
mutually coupled. That is if W ij is allowed to be nonzero and
Wjk is allowed to be nonzero, then W i k must be zero. The idea
of chaining is to "chain" two physical bits together to represent
one logical bit. For example if the logical bits ql, q2, and q3
needed to be mutually coupled to represent the desired QUBO,
the logical ql could be represented with two physical bits that
have the following properties: they are coupled to one another,
one of them is coupled to the physical bit for q2, and the other
is coupled to the physical bit for q3. Terms would have to be
added to the objective function in (1) so that the QAM is
encouraged to return sampIes where the two physical bits that
represent the logical bit ql are equal to one another. This is the
embedding process that is automatically carried out for ToQ.jl
models. The automatic process embeds a logical QUBO into
a QUBO that fits within the sparsity structure imposed by the
hardware. Of course, it is not always possible to do so, and
the process may fail.

The complication introduced by chaining is that one must
determine how to scale the terms added to the original ob
jective function by the chaining process. If f (q) represents
our original objective function and g(q) consists of the terms
introduced in the chaining process, the new objective function
is

j(q) = f(q) + ag(q) (lO)

where a > 0 is the scaling factor (corresponding to the
param_chain keyword argument of ToQ. sol ve !). If a
is too smalI, the sampIes returned by the QAM will be
inconsistent with the logical QUBO given by f (q). That is,
the physical bits that are supposed to represent a single logical
bit will not have the same value, so there is not a unique
mapping from the physical bits to the logical bits. If such a
situation occurs, we say that the chain is broken. If the chain
is broken, the logical bits are not properly coupled. On the
other hand, if a is too large, chains will be unlikely to be
broken, but the sampIes are less likely to make f (q) smalI.
That is, many sampIes may be required from the QAM before
one is obtained that minimizes the original QUBO. One way
to conceptualize the QUBOs is as a vector space, but the
QUBOs that can be executed by a QAM all fit inside a box;
so this conceptualization can be misleading. Once a reaches a
certain threshold, the QUBO represented by ag(q) will be on
the boundary of the box. Further increasing a will effectively

400 -2 bits • 350 -3 bits I • Ul -4 bits I • ipoO
:> I 0-

ro 250 • • u
'in • I • ~200 I I • c. • I • 0 • I Qj 150 I I .0

I ~ 100 I I I z
I I 50 • I I I I

I I • •
0

2 4 6 8 10
Number of dimensions in x

Fig. 2. The number of physical bits used to represent the fixed-point solution
as a function of the number of (real-valued) unknowns is plotted for several
different fixed-point representations.

diminish the weight of the f (q) term in (10), since the QUBO
will be automatically rescaled to fit in the box.

The process of chaining/embedding also significantly in
creases the number of bits required to represent the QUBO.
Fig. 2 shows the number ofbits required to solve the embedded
version of Laplace's equation. There is some variability in the
number of physical bits in the embedded problem because
the software that performs the embedding uses a stochastic
algorithm. The number of physical bits that must be utilized
to represent the logical QUBO grows much faster than the
number of logical bits needed to represent the logical QUBO.
For example, the 4-bit, lO-dimensional Laplace's equation
typically requires approximately 350 physical bits whereas the
logical problem requires only 40 bits.

Note that Wjk in (5) is nonzero if and only if there is a row
of A with nonzero components in the lh and kth columns.
This means that if A has a sparsity structure that is consistent
with the sparsity ofthe couplings between the bits in the QAM,
the chaining trick described above is not necessary. We expect
that problems which fit naturally into the QAM's topology
(i.e., the sparsity structure of Wij) would provide much beUer
performance in terms of the probability of obtaining the least
squares solution. This would provide the additional benefit of
being able to solve larger problems, as the number of bits in
the logical problem would be the same as the number of bits
used in the QAM.

In these early stages of using the QAM, the goal is often
seen as finding a real-world problem that is a member of the
(relatively smalI) set of problems for wh ich the QAM provides
good performance. An alternative goal would be to find a
QAM for which a given problem can be solved efficiently.
This search could be carried out with QAM simulators. If a
flexible simulator were built that allowed users to set the size,
topology, temperature (in the Boltzmann distribution), and size

U.S. Government work not protected by U.S. copyright

of the box that the QUBO coefficients must fit in, we could
then answer questions like "What is the simplest QAM that can
realize a desired performance metric for a given problem?".
Answering such a question would provide guidance about the
development of future QAMs in hardware.

VI. CONCLUSION & FUTURE DIRECTIONS

We have presented the design and a couple uses of ToQ.jl,
a high-level programming language for QAMs. ToQ.jl makes
it relatively easy to write short codes that can solve diverse
problems on a QAM. We demonstrated this with applications
to map-coloring and linear least squares problems. In its
current form, ToQ.j1 replicates what we see as the key features
of ToQ (variables, parameters, and the ability to add terms
to the QUBO) while leveraging the capabilities of Julia so
that complex QUBOs can be constructed easily. There are a
number of ways that ToQ.jl could be improved to give pro
grammers more flexibility without adding too much additional
complexity.

Our perception is that getting the best performance out of
the QAM requires a problem which fits naturally in the QAM's
topology. For such problems, the process of chaining/embed
ding would have a negative impact on performance since the
stochastic embedding algorithm is unlikely to find a perfect
match between the physical bits and the logical bits. Because
of this issue, it is imperative to give the programmer more
control over how ToQ.jl's variables are mapped onto the phys
ical bits. ToQ.jl's @defvar macro can be extended to permit
this,e.g.,@defvar model logbits[l:nj physbits
could be used to give control over the physical bits that
correspond to the logical bits. In this case, physbi t s would
be an integer array with n elements containing the indices
of the physical bits that correspond to the logical bits in
logbits. Doing this would require more work on the back
end. Currently, we are using ToQ and the 'dw' conunand
line interface as the back end, but the Python or C API
would be a more natural back end in this situation. Reworking
the back end to use one of these APIs would be relatively
straightforward, but it remains to be done. The ability to
associate ToQ.jl variables with physical bits is the main feature
that limits the flexibility of ToQ.jl in comparison to using the
Python or C APIs directly. Adding this feature would largely
bridge the gap so that ToQ.jl would have the flexibility of the
Python and C API while being more expressive.

Some other features that would be beneficial include
constructs that allow the programm er to express concepts
at a higher level. These would enhance the expressiveness
of ToQ.jl. For example, the only way to construct a QUBO
presently is with the @addterm macro where each term
must be added one at a time. This could be extended so that
multiple terms (e.g. @addterms model 2*ql+3*ql*q2)
could be added at once. It would also be useful
to automatically expand quadratic expressions
@addterms model (q[i-lj-2*q[ij+q[i+lj)A2
could be used where ToQ.jl would automatically expand
the quadratic expression and add the terms to the model.

For example, including such an expression in a loop (and
dealing with the first and last rows separately) would make it
very natural to represent the discrete Laplace equation as a
QUBO where the unknown is a binary vector. Higher order
expressions (cubic, quartic, etc.) could also be automatically
expanded and represented as a QUBO. However, we are
somewhat hesitant to implement the higher order expressions
because it requires the automatic creation of extra variables
and increases parameter chaining, both of wh ich are likely to
have adetrimental impact on performance.

There are many possible directions for future improvements
to ToQ.jl. We are currently in the process of releasing ToQ.jl as
open-source software; we welcome and encourage feedback,
feature requests, and contributions.

ApPE NDIX A

CONDENSED MAP COLORING CODE

using ToQ
provs = ["Be" , "YK" , "NW",
nbors = Dict ()
nbors ["Be"] = ["YK" , "NW",
nbors["YK"] = ["Be", "NW"]
... set up more neighbors ...
nbors["PE"] = []
nbors["NL"] = ["QB"]

"AB", ...

"AB"]

m = ToQ.Model("canada_model", ...
@defvar m rgb[1:1ength(provs), 1:3]
@defparam m c_p #color penalty
@defparam m n_p #neighbor penalty
#add color penalties
for i = 1:1ength(provs)
for j = 1:3

@addterm m -l*c_p*rgb[i, j]
for k = l:j - 1

@addterm m 2*c_p*rgb[i, j]*rgb[i, k]
end

end
end
#add neighbor penalties
for j = 1:1ength(provs)
for k = l:j - 1
if provs[k] in nbors[provs[j]]
for i = 1:3

@addterm m n_p*rgb[j, i]*rgb[k, i]
end

end
end

end
#solve the system on the QAM
ToQ.solve! (m; c_p=l, n_p=5, param_chain=2,

numreads=100, doembed=true)
for i = l:ToQ.getnumsolutions(m)
@loadsolution m energy num_occ valid i
#do something with the solution

end

U.S. Government work not protected by U.S. copyright

ApPENDIX B
CONDENSED LEAST SQUARES CODE

function binlin(A, b; e_pval=l / 8, ...
m = ToQ. Model ("binlin_model",
@defparam m e_p
@defvar m x[l:size(A, 2)]
#set up each equation
v = zeros(size(A, 2))
w = zeros(size(A, 2), size(A, 2))
for i = 1:1ength(b)
for j = l:size(A, 2)
v[j] += A[i, j] * (A[i, j] - 2 * b[i])
for k = l:j - 1

w [j, k] += 2 * A [i, j] * A [i, k]

end
end

end
for i = 1:1ength(v)
if v[i] != 0

@addterm m e_p * v[i] * xli]
end
for j = 1:1ength(v)
if w[i, j] != 0

@addterm m e_p * w[i, j] * xli] * x[j]
end

end
end
#solve the system
ToQ.solve! (m; e_p=e_pval, param_chain=l,

numreads=numreads, doembed=true)
#load the solutions
sols = Array {Float64, I } []
phys_OFs = Float64[]
10g_OFs = Float64[]
num_occ = Float64[]
for i = l:ToQ.getnumsolutions(m)
@loadsolution m energy num_occi valid i
push! (sols, copy (x. value))
push! (phys_OFs, energy)
logical_obj_func = sumabs2(A*x.value-b)
push! (log_OFs, logical_obj_func)
push! (num_occ, num_occi)

end
return sols,phys_OFs,log_OFs,num_occ,m

end

ACKNOWLEDGMENT

The authors acknowledge Edward D. Dahl for his instruc
tion and helpful discussions during the preparation of the
manuscript. DO acknowledges the support of a Los Alamos
National Laboratory Director's Postdoctoral Fellowship. VVV
acknowledges the support of the DiaMonD project (An Inte
grated Multifaceted Approach to Mathematics at the Interfaces
of Data, Models, and Decisions, U.S. Department of Energy
Office of SClence, Grant #11145687).

R EFERENCES

[1] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, "Julia:
A fast dynamie language for teehnieal eomputing," arXiv preprint
arXiv: 1209.5145, 2012.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh
approaeh to numerical computing," arXiv preprint arXiv:1411.1607,
2014.

[3] D.-W. S. Ine., "Software," 2016, aecessed 20-April-2016. [Online].
Available: http://www.dwavesys.com/software

[4] JuliaLang, "Metaprogramming," 2016, aeeessed 20-April-
2016. [Online]. Available: http://docs.julialang.org/enlrelease-
0.4/manual/metaprogramming/

[5] Z. Bian, F. Chudak, W. G. Maeready, and G. Rose,
"The ising model: teaching an old problem new tricks,"
D-Wave Systems lne. , Burnaby, British Columbia, Canada,
Tech. Rep. , 2010, accessed 20-April-2016. [Online]. Available:
http://www. d wa ves ys. eo rn/si tes/defaul t/fi I es/ wei ghted maxsaC v2. pd f

[6] A. Lueas, "lsing formulations of many np problems," Frontiers in
Physics, vol. 12, 2014.

[7] M. Lubin and I. Dunning, "Computing in operations research using
julia," INFORMS Journal on Computing, vol. 27, no. 2, pp. 238-248,
2015. [Online] . Available: http://dx.doi.org/ IO.l287/ijoe.2014.0623

[8] E. D. Dahl, "Programming with d-wave: Map eoloring
problem," D-Wave Systems lne., Burnaby, British Columbia,
Canada, Tech. Rep. , 2013, aecessed 20-April-2016. [Online] . Available:
http://www.dwavesys.eom/sites/default/files/Map%20Coloring%20WP2.pdf

[9] S. Chretien and F. Corset, "Using the eigenvalue relaxation for binary
least-squares estimation problems," Signal Processing, vol. 89, no. 11 ,
pp. 2079- 2091 , 2009.

[10] E. Tsakonas, J. Jalden, and B. Ottersten, "Robust binary least squares:
Relaxations and algorithms," in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on. IEEE, 2011 , pp.
3780-3783.

U.S. Government work not protected by U.S. copyright

