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Abstract-Quantum computers are becoming more widely 
available, so it is important to develop tools that enable people 
to easily program these computers to solve complex problems. 
To address this issue, we present the design and two applications 
of ToQ.jl, a high-level programming language for D-Wave quan
tum annealing machines. ToQ.jl leverages the metaprogramming 
facilities in Julia (a high-level, high-performance programming 
language tor technical computing) and uses D-Wave's ToQ 
programming language as an intermediate representation. This 
makes it possible for a programmer to leverage all the capabilities 
of Julia, and the D-Wave machine is used as a co-processor. 
We demonstrate ToQ.jl via two applications: (1) a pedagogical 
example based on a map-coloring problem and (2) a linear least 
squares problem. We also discuss our experience using ToQ.jl 
with a D-Wave 2X, particularly with respect to a linear least 
squares problem which is 01' broad interest to the scientific 
computing community. 

I. INTRODUCTION 

Julia [1], [2] is a fast dynamic language for technical 
computing. ToQ (pronounced "to cue") is a progranuning 
language developed by D-Wave [3] that transforms human
readable code into a "quantum machine instruction" that can 
be executed by a D-Wave quantum annealing machine (QAM). 
ToQ can be seen as a high-level programming language among 
tools available for programming QAMs, but it lacks many 
high-level constructs (e.g., loops, arrays, functions , etc.). One 
path forward for ToQ would be to incrementally add more 
high-level functionality, but this would be time consuming and 
result in yet another programming language. As an alternative 
to this path, we have developed an extension of the Julia lan
guage, ToQ.jl, that uses ToQ as an intermediate representation. 
With ToQ.jl, we inunediately have a high-level progranuning 
language with a large set of available Iibraries that treats 
the QAM as a co-processor. We call ToQ.jl a programming 
language, but, more specifically, it is a Julia module that 
incIudes macros [4] which effectively extend the syntax of 
Julia to replicate the key features of ToQ. 

In addition to ToQ, D-Wave has also developed application 
program interfaces (APIs) that are available for the C and 
Python programming languages. Like ToQ.jI, these APIs pro
vide a mechanism to utilize a D-Wave QAM from a high-level 
programming language. However the APIs for these languages 
require the programm er to interact with the QAM at a lower 
level than ToQ. Using C or Python with these APIs to control 
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the QAM gives the programm er a great deal of ftexibility, but 
the ftexibility comes with a degree of complexity that is not 
present when using ToQ. In contrast, ToQ.jl provides much 
(but, at present, not all) of the ftexibility that comes with using 
the C or Python APIs, but without the additional complexity. 
For example, when using ToQ or ToQ.jl , the programmer is 
able to define variables that correspond to logical bits. In 
contrast, when using the C or Python APIs, the programm er 
has to keep track of indices that correspond to bits rather 
than using a C or Python variable to represent the bit. The 
examples we study, both of which have run on a D-Wave 2X, 
demonstrate that relatively complex problems can be expressed 
in short ToQ.jl code (see the appendices). 

11. TOQ.JL 

The basic input to a QAM is a quadratic unconstrained 
binary optirnization (QUBO) problem. The objective function 
associated with a QUBO can be formulated as 

f(q) = L viqi + L Wijqiqj 

i<j 

(1) 

The QAM returns binary vectors, q, that are preferentially 
sampled so that f (q) is small. The sampIes have a distribution 
wh ich is approximately Boltzmann [5]. The goal of ToQ.jl is to 
make it easy to represent problems in the form of (1). While 
this form may be restrictive, it has been shown that many 
NP-hard problems can be formulated in an equivalent Ising 
formulation [6]. 

The design of ToQ.j1 is heavily inftuenced by JuMP (a 
modeling language for mathematical progranuning that ex
tends Julia) [7] and ToQ itself. Writing a program with ToQ.jl 
generally follows these steps: 

1) Create a ToQ.jl model object 
2) Define the variables and parameters of the model (we 

will discuss the difference between these) 
3) Add terms to the QUBO objective function (1) 
4) Execute the model on the QAM 
5) Load the sampIes 

Creating a ToQ.j1 model object is achieved by calling 
ToQ. Model ( ... ) where the parameters to this function 
describe the QAM and give names for where files associated 
with the model will be stored seamlessly in the background. 



If we think of the QAM as being analogous to a GPU, then a 
model is analogous to a GPU kernel. 

One can define scalar, array, matrix, ete 
variables with ToQ.jl's @defvar macro. 
For example, @defvar model mybit, 
@defvar model mybits[l:m], and 
@defvar model mybits[l:m , l:n] would create a 
scalar, m-element array, and an m-by-n matrix variable, 
respectively, as part of model where m and n are Julia 
integer variables. Parameters are defined similarly with the 
@defparam macro, but only scalar parameters are permitted. 
It can be easy to conflate "variables" and "parameters" (a 
nomenclature wh ich we borrowed from ToQ), but they are 
distinct. A variable corresponds to a qi in (1), but a parameter 
does not. Note that set of functions that can be written as (1) 
form a vector space. In particular, if fand 9 are in this form, 
then so is af + ßg. Parameters are akin to the a and ß. The 
parameters make it possible to vary the weights of different 
parts of (1) without having to redo a (potentially expensive) 
operation called embedding. The utility of parameters will be 
illustrated in the applications. 

Initially the QUBO (f( q) from (1)) associated 
with the model is equal to zero. One can add terms 
to f(q) with the @addterm macro. For example 
@addterm model exp(2)*mybit whcre mybit is 
a ToQ.jl variable would add a linear term to f(q) where 
the Vi corresponding to mybi t would be incremented by 
e2 . Note that the ability to use the exponential function in 
these terms comes from Julia's underlying implementation 
of the exponential function. Parameters can also be included 
in the terms, but the value of the parameters must be set 
before executing on the QAM. For example, it is possible 
to do @addterm model param*mybit where param 
is a ToQ.jl parameter. Quadratic terms can also be added, 
@addterm model param*mybits[j]*mybits[i] 
where mybit s is a variable array and i and j are Julia 
integer variables. The terms must be products, contain one or 
two variables, and zero or one parameters. They can contain 
an arbitrary number of other valid Julia expressions that 
evaluate to a scalar. 

By calling ToQ. sol ve! (model ; kwargs ... ), one 
causes the QAM to produce sampies for the QUBO associated 
with model using a set of keyword arguments kwargs. 
ToQ.jl accomplishes this by translating the model into a ToQ 
program and using the 'dw' command line interface [3] to 
compile, embed (if desired), and execute the QUBO on the 
QAM. There are several keyword arguments that can be passed 
to this function. There is a keyword argument for each of the 
parameters - it is at this time that the parameter values are 
set. Other keyword arguments include numreads (how many 
sampies the machine should produce) and doembed. The 
doembed argument controls whether or not the model should 
be "embedded." ToQ.jl allows one to pose a logical QUBO in 
the form of (1), but the QAM imposes additional restrictions 
(sparsity on Wij). The process of embedding transforms the 
logical QUBO into one that matches the sparsity structure 
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imposed by the machine. This introduces an additional key
word argument param_chain that is effectively a parameter 
that must be set. Embedding adds new terms to the QUBO, 
and param_chain controls the magnitude of these terms. 
One can reset the parameters' values and call ToQ. sol ve ! 
again without having to do the embedding again by passing 
doembed=false as a keyword argument. 

After calling ToQ.solve!, ToQ.getnumsolutions 
can be used to obtain the number of unique sampies returned 
by the QAM. Then the i th solution can be loaded with 
@loadsolution model energy occs isvalid i 
where now energy contains the energy of the sampie 
(reported by the QAM), occs contains the number of 
occurrences of that sampie, and i sv al i d is true if the 
sampie is valid (i.e., the embedding process did not break the 
logical structure for this sampie). The values of the ToQ.jl 
variables associated with this solution can then be accessed 
via varname. value where varname is the name of the 
variable. 

In. ApPLICATION TO MAP COLORING 

Having described the basic usage of ToQ.jl, we now il
lustrate the usage with an application to coloring the map 
of Canada with three colors so that no two neighboring 
provinces/territories (hereafter, just provinces for brevity) have 
the same color. A C implementation of this map-coloring 
problem is part ofD-Wave's educational materials (e.g., [8]). A 
condensed version of the source code for solving this problem 
is given in appendix A. The first handful of lines set up an 
array of the provinces of Canada and a dictionary describing 
their neighbor relationships, then a ToQ.j1 model object is 
created. Next, the variables that will be used are defined via 
@defvar m rgb [1 : length (provs), 1: 3], which is 
a matrix with one row for each province and 3 columns. The 
idea behind this is that each row will contain exactly one 1. 
The column in wh ich the 1 is contained determines wh ich 
color is assigned to the province corresponding to that row. 
For example, the first row is the row for British Columbia. 
If rgb[l, 1]==1, rgb[l, 2]==1, or rgb[l, 3]==1, 
British Columbia would be assigned the color red, green, or 
blue, respectively. 

The QUBO must be designed in such a way that each row 
is encouraged to contain exactly one non zero bit and so that if 
two provinces neighbor one another, they do not have a one in 
the same column. The QUBO can be represented in the form 

where q corresponds to rgb, P is the set of provinces, gp is 
minimized when the row of rgb corresponding to province 
P has exactly one nonzero element, N is a set containing all 
sets of neighboring provinces, and h{PI ,P2} is minimized when 
the the rows in rgb corresponding to provinces PI and P2 do 
not contain a 1 in the same column. At a high level, the first 
term of (2) encourages the QAM to produce sampies such that 
each province is assigned exactly one color and the second 



term encourages the QAM to produce sampies such that no 
two neighboring provinces have the same color. The constants 
a and ß will correspond to ToQ.jl parameters that control 
how strongly the QAM should be encouraged to achieve each 
of these goals. a corresponds to the ToQ.jl parameter, c_p, 
defined via @defparam m c_p and ß corresponds to n_p. 

The first term is constructed with 3 nested loops: 

for i = 1:1ength(provs) 
for j = 1:3 

@addterm m -l*c_p*rgb[i, j] 
for k = l:j - 1 

@addterm m 2*c_ p*rgb[i, j]*rgb[i, k] 

The second term is constructed with 3 nested loops where 
the innermost loop is executed only if the two provinces are 
neighbors: 

for j = 1:1ength(provs) 
for k = l:j - 1 
if provs[k] in nbors[provs[j]] 
for i = 1:3 

@addterm m n _p*rgb[j, i]*rgb[k, i] 

Since ToQ.jl extends Julia, the high level constructs we used 
to describe the provinces and their neighbor relationships (an 
array of strings and a dictionary) can be readily used to 
construct the QUBO. 

The model is executed on the QAM by calling 
ToQ. sol ve! (m; ... ), where in the listing in appendix 
A, c_ p, n_ p, and param_ chain are set to 1,5, and 2 (re
spectively), the number of sampies (numreads) is set to 100, 
and the embedding will be performed (doembed=true). 
The values of c_p, n_p, and param_ chain must be tuned 
to obtain good results. For example, if c_ p is too large in 
comparison to n_ p and param_ chain, the sampies will tend 
to assign a unique color to the provinces, but will be prone to 
have neighbors assigned the same color and/or inconsistencies 
with the logical QUBO. Similar undesired behavior results if 
n_p or param_chain is too large in comparison to the other 
parameters. Note that on subsequent solves, the parameters 
could be set to different values without needing to embed 
the problem again. That is, in subsequent solves, one can set 
doembed=false and this will speed the process up. Finally, 
solutions can be loaded with @loadsolution. 

IV. ApPLICATION TO LINEAR LEAST SQUARES PROBLEMS 

We begin by considering the binary linear least squares 
problem 

(3) 

where A is a real-valued matrix, b is a real-valued vector and q 
is a binary vector. The objective function for this optimization 
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problem is readily represented in the form of (1) with 

(4) 

(5) 

where A i j is the component of A in the i th row and lh 
column and bi is the i th component of b. The ToQ.jl code 
for solving this problem is listed in appendix B. Note that the 
code in appendix B is implemented as a Julia function wh ich 
can be called just like any other Julia function. 

Suppose that we now wish to solve a (non-binary) linear 
least squares problem 

x = arg minxl lAx - b ll ~ (6) 

where x is not a binary vector, but a real-valued vector with 
N components. To solve this problem using the binary least 
squares routine, we discretize x with an n -bit fixed point 
approximation 

n 

d _ '" 2j o - j 
Xi - ~ % - l)n+ j (7) 

j = l 

where jo sets the fixed point, xd = (x~, x~ , ... , x1v-) is the 
discretized version of x and q = (q1, q2," ., qNn) is a binary 
vector. Then we form a new matrix, Ad with Nn columns 
that is constructed in such a way that Axd = Adq. This is 
achieved by setting the [(i - l)n + j ] th column of Adequal to 
2jo - j times the i th column of A where i ranges from 1 to N 
and j ranges from 1 to n. Using A d , we can approximately 
reformulate the linear least squares problem in terms of q 

(8) 

Now, the problem can be optimized by the QAM using the 
QUBO formulation given in equations 4 and 5 with A i j 

replaced by A~j' 

A. Laplace's Equation 

Our development of the linear least squares problems arose 
out of an attempt to use the D-Wave 2X to solve a one-
dimensional discretization of Laplace's equation, 

- 2 1 0 0 0 0 0 0 
1 - 2 1 0 0 0 0 0 
0 1 - 2 1 0 0 0 0 

Lx = x = b 

0 0 0 0 1 - 2 1 0 
0 0 0 0 0 1 - 2 1 
0 0 0 0 0 0 1 - 2 

(9) 
This equation has many physical interpretations. For example, 
in subsurface hydrology, this is a discretized version of the 
steady-state groundwater equation where x would be a dis
cretization of the pressure and b would be a discretization of 
the groundwater recharge. 

Using the fixed-point least squares approach described pre
viously, we obtained 10,000 sampies from the D-Wave 2X 
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Fig. l. The probability of obtaining the optimal fixed-point solution to a 
discrete, one-dimensional Laplace equation as a function of the number of 
(real-valued) unknowns is plotted for several different fixed-point representa
tions. No optimal solutions were obtained when the dimension of x was 9 or 
10. 

using lO different embeddings for lOO,OOO sampIes in total. 
We explored fixed-point representations with 2, 3, and 4 bits; 
and attempted to find a least squares solution to (9) with the 
number of unknowns (dimension of x) ranging from 2 to lO. 
The fixed-point version of the discrete Laplacian, Ld, and b 
were then passed to the function listed in appendix B to obtain 
the sampIes. 

Fig. 2 shows an estimate of the probability of obtaining 
a least squares solution for a subset of these problems. The 
subset in the figure contains those where at least one of 
the lOO,OOO sampIes was a least squares solution. In the 
other cases, we estimate that the probability of obtaining 
a least squares solution is less than or approximately one 
in lOO,OOO. For least squares problems, this probability is 
a natural performance metric. An alternative would be to 
compute the expected time to obtain the least squares solution 
(wh ich would be inversely proportional to the probability and 
proportional to the annealing time). Doing so would bring 
the annealing time into the picture (potentially an important 
component of performance), but we have left the annealing 
time fixed at the lowest possible value of 20 microseconds in 
all the cases examined here. Another important performance 
metric is the asymptotic time required to assemble the QUBO. 
In the case of an N x N dense matrix, this time is O(N3 ). 

This is the same as solving a dense least squares problem with 
a cIassical computer, so it is unlikely that solving this problem 
with a QAM will ever provide an enormous performance 
increase. Sparse systems or binary least squares problems [9], 
[lO] may have more potential for performance improvements 
with a QAM. 
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V. USER EXPERIENCE 

From our perspective, there are two main complications that 
arise when programming for the QAM: 

1) The values of Vi and W ij are bounded. They correspond 
to physical machine settings that have limits . 

2) If we think of W ij as a matrix, the matrix is sparse and 
the structure of the sparseness is fixed by the QAM . 
A given W ij can be nonzero only if there is a physical 
coupling between the bits qi and qj. 

The last complication can be resolved by "chaining" bits 
together, but this resolution introduces a complication of its 
own. 

In the current hardware (the D-Wave 2X), no three bits are 
mutually coupled. That is if W ij is allowed to be nonzero and 
Wjk is allowed to be nonzero, then W i k must be zero. The idea 
of chaining is to "chain" two physical bits together to represent 
one logical bit. For example if the logical bits ql, q2, and q3 
needed to be mutually coupled to represent the desired QUBO, 
the logical ql could be represented with two physical bits that 
have the following properties: they are coupled to one another, 
one of them is coupled to the physical bit for q2, and the other 
is coupled to the physical bit for q3. Terms would have to be 
added to the objective function in (1) so that the QAM is 
encouraged to return sampIes where the two physical bits that 
represent the logical bit ql are equal to one another. This is the 
embedding process that is automatically carried out for ToQ.jl 
models. The automatic process embeds a logical QUBO into 
a QUBO that fits within the sparsity structure imposed by the 
hardware. Of course, it is not always possible to do so, and 
the process may fail. 

The complication introduced by chaining is that one must 
determine how to scale the terms added to the original ob
jective function by the chaining process. If f (q) represents 
our original objective function and g( q) consists of the terms 
introduced in the chaining process, the new objective function 
is 

j(q) = f(q) + ag(q) (lO) 

where a > 0 is the scaling factor (corresponding to the 
param_chain keyword argument of ToQ. sol ve !). If a 
is too smalI, the sampIes returned by the QAM will be 
inconsistent with the logical QUBO given by f (q). That is, 
the physical bits that are supposed to represent a single logical 
bit will not have the same value, so there is not a unique 
mapping from the physical bits to the logical bits. If such a 
situation occurs, we say that the chain is broken. If the chain 
is broken, the logical bits are not properly coupled. On the 
other hand, if a is too large, chains will be unlikely to be 
broken, but the sampIes are less likely to make f (q) smalI. 
That is, many sampIes may be required from the QAM before 
one is obtained that minimizes the original QUBO. One way 
to conceptualize the QUBOs is as a vector space, but the 
QUBOs that can be executed by a QAM all fit inside a box; 
so this conceptualization can be misleading. Once a reaches a 
certain threshold, the QUBO represented by ag( q) will be on 
the boundary of the box. Further increasing a will effectively 
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Fig. 2. The number of physical bits used to represent the fixed-point solution 
as a function of the number of (real-valued) unknowns is plotted for several 
different fixed-point representations. 

diminish the weight of the f (q) term in (10), since the QUBO 
will be automatically rescaled to fit in the box. 

The process of chaining/embedding also significantly in
creases the number of bits required to represent the QUBO. 
Fig. 2 shows the number ofbits required to solve the embedded 
version of Laplace's equation. There is some variability in the 
number of physical bits in the embedded problem because 
the software that performs the embedding uses a stochastic 
algorithm. The number of physical bits that must be utilized 
to represent the logical QUBO grows much faster than the 
number of logical bits needed to represent the logical QUBO. 
For example, the 4-bit, lO-dimensional Laplace's equation 
typically requires approximately 350 physical bits whereas the 
logical problem requires only 40 bits. 

Note that Wjk in (5) is nonzero if and only if there is a row 
of A with nonzero components in the lh and kth columns. 
This means that if A has a sparsity structure that is consistent 
with the sparsity ofthe couplings between the bits in the QAM, 
the chaining trick described above is not necessary. We expect 
that problems which fit naturally into the QAM's topology 
(i.e., the sparsity structure of Wij) would provide much beUer 
performance in terms of the probability of obtaining the least 
squares solution. This would provide the additional benefit of 
being able to solve larger problems, as the number of bits in 
the logical problem would be the same as the number of bits 
used in the QAM. 

In these early stages of using the QAM, the goal is often 
seen as finding a real-world problem that is a member of the 
(relatively smalI) set of problems for wh ich the QAM provides 
good performance. An alternative goal would be to find a 
QAM for which a given problem can be solved efficiently. 
This search could be carried out with QAM simulators. If a 
flexible simulator were built that allowed users to set the size, 
topology, temperature (in the Boltzmann distribution), and size 
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of the box that the QUBO coefficients must fit in, we could 
then answer questions like "What is the simplest QAM that can 
realize a desired performance metric for a given problem?". 
Answering such a question would provide guidance about the 
development of future QAMs in hardware. 

VI. CONCLUSION & FUTURE DIRECTIONS 

We have presented the design and a couple uses of ToQ.jl, 
a high-level programming language for QAMs. ToQ.jl makes 
it relatively easy to write short codes that can solve diverse 
problems on a QAM. We demonstrated this with applications 
to map-coloring and linear least squares problems. In its 
current form, ToQ.j1 replicates what we see as the key features 
of ToQ (variables, parameters, and the ability to add terms 
to the QUBO) while leveraging the capabilities of Julia so 
that complex QUBOs can be constructed easily. There are a 
number of ways that ToQ.jl could be improved to give pro
grammers more flexibility without adding too much additional 
complexity. 

Our perception is that getting the best performance out of 
the QAM requires a problem which fits naturally in the QAM's 
topology. For such problems, the process of chaining/embed
ding would have a negative impact on performance since the 
stochastic embedding algorithm is unlikely to find a perfect 
match between the physical bits and the logical bits. Because 
of this issue, it is imperative to give the programmer more 
control over how ToQ.jl's variables are mapped onto the phys
ical bits. ToQ.jl's @defvar macro can be extended to permit 
this,e.g.,@defvar model logbits[l:nj physbits 
could be used to give control over the physical bits that 
correspond to the logical bits. In this case, physbi t s would 
be an integer array with n elements containing the indices 
of the physical bits that correspond to the logical bits in 
logbits. Doing this would require more work on the back 
end. Currently, we are using ToQ and the 'dw' conunand 
line interface as the back end, but the Python or C API 
would be a more natural back end in this situation. Reworking 
the back end to use one of these APIs would be relatively 
straightforward, but it remains to be done. The ability to 
associate ToQ.jl variables with physical bits is the main feature 
that limits the flexibility of ToQ.jl in comparison to using the 
Python or C APIs directly. Adding this feature would largely 
bridge the gap so that ToQ.jl would have the flexibility of the 
Python and C API while being more expressive. 

Some other features that would be beneficial include 
constructs that allow the programm er to express concepts 
at a higher level. These would enhance the expressiveness 
of ToQ.jl. For example, the only way to construct a QUBO 
presently is with the @addterm macro where each term 
must be added one at a time. This could be extended so that 
multiple terms (e.g. @addterms model 2*ql+3*ql*q2) 
could be added at once. It would also be useful 
to automatically expand quadratic expressions 
@addterms model (q[i-lj-2*q[ij+q[i+lj)A2 
could be used where ToQ.jl would automatically expand 
the quadratic expression and add the terms to the model. 



For example, including such an expression in a loop (and 
dealing with the first and last rows separately) would make it 
very natural to represent the discrete Laplace equation as a 
QUBO where the unknown is a binary vector. Higher order 
expressions (cubic, quartic, etc.) could also be automatically 
expanded and represented as a QUBO. However, we are 
somewhat hesitant to implement the higher order expressions 
because it requires the automatic creation of extra variables 
and increases parameter chaining, both of wh ich are likely to 
have adetrimental impact on performance. 

There are many possible directions for future improvements 
to ToQ.jl. We are currently in the process of releasing ToQ.jl as 
open-source software; we welcome and encourage feedback, 
feature requests, and contributions. 

ApPE NDIX A 

CONDENSED MAP COLORING CODE 

using ToQ 
provs = ["Be" , "YK" , "NW", 
nbors = Dict () 
nbors ["Be"] = ["YK" , "NW", 
nbors["YK"] = ["Be", "NW"] 
... set up more neighbors ... 
nbors["PE"] = [] 
nbors["NL"] = ["QB"] 

"AB", ... 

"AB"] 

m = ToQ.Model("canada_model", ... 
@defvar m rgb[1:1ength(provs), 1:3] 
@defparam m c_p #color penalty 
@defparam m n_p #neighbor penalty 
#add color penalties 
for i = 1:1ength(provs) 
for j = 1:3 

@addterm m -l*c_p*rgb[i, j] 
for k = l:j - 1 

@addterm m 2*c_p*rgb[i, j]*rgb[i, k] 
end 

end 
end 
#add neighbor penalties 
for j = 1:1ength(provs) 
for k = l:j - 1 
if provs[k] in nbors[provs[j]] 
for i = 1:3 

@addterm m n_p*rgb[j, i]*rgb[k, i] 
end 

end 
end 

end 
#solve the system on the QAM 
ToQ.solve! (m; c_p=l, n_p=5, param_chain=2, 

numreads=100, doembed=true) 
for i = l:ToQ.getnumsolutions(m) 
@loadsolution m energy num_occ valid i 
#do something with the solution 

end 
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ApPENDIX B 
CONDENSED LEAST SQUARES CODE 

function binlin(A, b; e_pval=l / 8, ... 
m = ToQ. Model ("binlin_model", 
@defparam m e_p 
@defvar m x[l:size(A, 2)] 
#set up each equation 
v = zeros(size(A, 2)) 
w = zeros(size(A, 2), size(A, 2)) 
for i = 1:1ength(b) 
for j = l:size(A, 2) 
v[j] += A[i, j] * (A[i, j] - 2 * b[i]) 
for k = l:j - 1 

w [ j, k] += 2 * A [i, j] * A [i, k] 

end 
end 

end 
for i = 1:1ength(v) 
if v[i] != 0 

@addterm m e_p * v[i] * xli] 
end 
for j = 1:1ength(v) 
if w[i, j] != 0 

@addterm m e_p * w[i, j] * xli] * x[j] 
end 

end 
end 
#solve the system 
ToQ.solve! (m; e_p=e_pval, param_chain=l, 

numreads=numreads, doembed=true) 
#load the solutions 
sols = Array {Float64, I } [] 
phys_OFs = Float64[] 
10g_OFs = Float64[] 
num_occ = Float64[] 
for i = l:ToQ.getnumsolutions(m) 
@loadsolution m energy num_occi valid i 
push! (sols, copy (x. value) ) 
push! (phys_OFs, energy) 
logical_obj_func = sumabs2(A*x.value-b) 
push! (log_OFs, logical_obj_func) 
push! (num_occ, num_occi) 

end 
return sols,phys_OFs,log_OFs,num_occ,m 

end 
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